$+ 2F_c^2$]/3

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = 0.074$ $\Delta \rho_{\text{max}} = 3.1 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -3.3 \text{ e } \text{\AA}^{-3}$ R(F) = 0.0515 $wR(F^2) = 0.1410$ Extinction correction: none S = 1.265Atomic scattering factors 2180 reflections from SHELXTL-Plus 113 parameters (Sheldrick, 1990) $w = 1/[\sigma^2(F_o^2) + (0.0738P)^2]$ + 1.51P] where $P = [\max(F_o^2, 0)]$

 $h = -9 \rightarrow 9$

 $k = 0 \rightarrow 18$

 $l = 0 \rightarrow 11$

2 standard reflections

reflections

monitored every 400

intensity decay: none

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Au	0.1801(1)	0.1156(1)	0.0890(1)	0.024 (1
Cl(1)	0.4666 (5)	0.1222 (3)	0.0708 (5)	0.047 (1
Cl(2)	0.1250 (5)	0.1925 (2)	-0.1339 (4)	0.041 (1
Cl(3)	-0.1068 (4)	0.1033 (3)	0.1086 (4)	0.045 (1
N	0.2268 (11)	0.0457 (7)	0.2869 (11)	0.025 (2
C(1)	0.2083 (18)	0.0839 (8)	0.4264 (13)	0.030 (3
C(2)	0.2413 (19)	0.0301 (10)	0.5509 (16)	0.041 (3
C(3)	0.2945 (21)	-0.0581(10)	0.5444 (16)	0.045 (4
C(4)	0.3135 (19)	-0.0957 (9)	0.4006 (15)	0.039 (3
C(5)	0.2810 (19)	-0.0430(9)	0.2788 (17)	0.041 (3
C(6)	0.1581 (25)	0.1813 (9)	0.4385 (17)	0.052 (4
0	0.2155 (15)	0.2386 (7)	0.3313(11)	0.044 (2

Table 2. Selected geometric parameters (Å, °)

Au—N	2.021 (9)	C(1)—C(2)	1.35 (2)
Au—Cl(2)	2.265 (3)	C(1)—C(6)	1.48 (2)
Au—Cl(1)	2.268 (4)	C(2)—C(3)	1.36 (2)
Au—Cl(3)	2.278 (4)	C(3)—C(4)	1.41 (2)
N—C(1)	1.374 (14)	C(4)—C(5)	1.32 (2)
N—C(5)	1.37 (2)	C(6)—O	1.38 (2)
N—Au—Cl(2)	179.2 (3)	N-C(1)-C(2)	117.6 (11)
N - Au - Cl(1)	90.0 (3)	N-C(1)-C(6)	120.6 (11)
Cl(2)—Au—Cl(1)	90.52 (14)	C(2) - C(1) - C(6)	121.8 (12)
N—Au—Cl(3)	88.7 (3)	C(3)-C(2)-C(1)	123.2 (14)
Cl(2)—Au—Cl(3)	90.80 (14)	C(2)-C(3)-C(4)	118.3 (12)
Cl(1)—Au—Cl(3)	177.87 (14)	C(3) - C(4) - C(5)	118.5 (13)
C(1) - N - C(5)	119.8(11)	N-C(5)-C(4)	122.7 (14)
C(1)—N—Au	122.9 (8)	0-C(6)-C(1)	115.0 (13)
C(5)—N—Au	117.4 (9)		

The H atom bonded to O was located from a difference Fourier map; other H atoms were placed in calculated positions. H atoms were refined with a common isotropic displacement parameter. The highest values of $\Delta \rho$ are near the heavy atoms and are probably the result of uncorrected thermal motion or inadequacies in the scattering factors.

Data collection: Nonius CAD-4 software. Cell refinement: Nonius CAD-4 software. Data reduction: Nonius CAD-4 software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: NA1179). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Dar, A., Moss, K., Cottrill, M. S., Parish, R. V., McAuliffe, C. A., Pritchard, R. G., Beagley, B. & Sandbank, J. (1992). J. Chem. Soc. Dalton Trans. pp. 1907-1913.
- Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.
- Holowczak, M. S., Stanel, M. D. & Wong, G. G. (1985). J. Am. Chem. Soc. 107, 5789-5790.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ni Dhubhghaill, O. M. & Sadler, P. J. (1993). Metal Complexes in Cancer Chemotherapy, edited by B. K. Keppler, pp. 221-248. Weinheim: VCH.
- Sadler, P. J. & Sue, R. E. (1994). Metal Based Drugs, 1, 107-144.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Timkovich, R. & Tulinsky, A. (1977). Inorg. Chem. 16, 962-963.

Acta Cryst. (1996). C52, 1424-1426

Diphenyltin Diiodide

R. ALAN HOWIE AND JAMES L. WARDELL*

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 30 August 1995; accepted 15 December 1995)

Abstract

The title compound, diiododiphenyltin, $[SnI_2(C_6H_5)_2]$, has essentially tetrahedral coordination geometry with intermolecular I...I and Sn...I separations close to the sum of the appropriate van der Waals radii.

Comment

The title compound, (I), consists of essentially individual Ph_2SnI_2 molecules separated by $I \cdots I$ and $Sn \cdots I$ distances close to the sum of the appropriate van der Waals radii; the van der Waals radii for Sn and I were taken to be 2.20 and 1.95-2.12 Å, respectively (Huheey,

Acta Crystallographica Section C ISSN 0108-2701 © 1996

Keiter & Keiter, 1993). Molecules of (I) form layers coincident with the $(\overline{1}01)$ plane, with Sn and I atoms in the plane.

The four primary bonds to tin in (I) are arranged in a slightly distorted tetrahedral array, with the bond angles ranging between 105.17(3) (I2-Sn-I1) and 116.7 (4) Å (C7—Sn—C1) (Fig. 1). The corresponding bond angles in Et_2SnI_2 were reported to be 104.0(2) and 130.2(11) Å (Alcock & Sawyer, 1977). The Sn-C [2.133(9) and 2.140(10)Å and Sn—I [2.6749(10)]and 2.7097 (10) Å] bond lengths are comparable to those found in both Ph_2SnCl_2 [2.104(5)–2.119(5) Å; Greene & Bryan, 1971] and Et_2SnI_2 [2.719(4)Å; Alcock & Sawyer, 1977].

Fig. 1. View of the title compound showing the atom-numbering scheme. Ellipsoids are plotted at the 40% probability level and H atoms have been omitted for clarity.

Significant intermolecular contacts in compound (I) are $I1 \cdots I2^{ii}$ and $I2 \cdots I1^{iii}$ [4.0745 (12) Å], $I1 \cdots I2^{i}$ and $I2 \cdots I1^{iv}$ [4.2490(11)Å], and possibly also $Sn^{i} \cdots I1$ [4.3885(10)Å] (Fig. 2; symmetry operations are as given in Table 2). The $Sn^{1} \cdots I1$ separation is just outside the limits of the van der Waals radii sum (4.15-4.32 Å),

Fig. 2. The unit cell of the title compound viewed down a, showing intermolecular contacts. Atoms are represented by circles of arbitrary size and H atoms have been omitted for clarity. Symmetry operations are as given in Table 2.

but the facts that the I1ⁱ-Snⁱ...I1 angle is close to linearity [174.21 (3)°] and the Sn—II bond is slightly longer than Sn-I2 suggest that this interaction is also significant. Alcock & Sawyer (1977) similarly interpreted intermolecular Sn...I separations of 4.284 (5) Å as indicating secondary bonding in Et₂SnI₂, with the consequent formation of chains of molecules. Secondary bonding and chain formation was also suggested for other Et_2SnX_2 compounds (X = Cl, Br) (Alcock & Sawyer, 1977). In the case of Et₂SnI₂, both I atoms of one molecule form bridging secondary bonds to the same neighbouring molecule; the somewhat different situation for (I) is shown in Fig. 2. While Greene & Bryan (1971) interpreted their structural data for Ph₂SnCl₂ in terms of molecular species in which distortion at the Sn atom from tetrahedral is induced by electronic effects rather than by intermolecular interactions, a subsequent reinterpretation by Bokii, Struchkov & Prokofiev (1972) utilized a weakly aggregated model, which seems to be appropriate also for the present compound.

Experimental

The title compound (¹¹⁹Sn NMR: δ –243.8 p.p.m. in CDCl₃) was prepared from the halogen-exchange reaction of Ph₂SnCl₂ and excess NaI in dry acetone and subsequent recrystallization from EtOH [m.p. 347.5-348 K, literature value 344-345 K; Ingham, Rosenberg & Gilman, 1960].

Crystal data

$[SnI_2(C_6H_5)_2]$	Mo $K\alpha$ radiation
$M_r = 526.71$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from
$P2_{1}/c$	reflections
a = 9.548(7) Å	$\theta = 10.7 - 11.4^{\circ}$
b = 11.924(11) Å	$\mu = 5.98 \text{ mm}^{-1}$
c = 12.714(10) Å	T = 298 K
$\beta = 94.68(6)^{\circ}$	Block
$V = 1443 (2) Å^3$	$0.6 \times 0.5 \times 0.4$ mm
Z = 4	Colourless
$D_{\rm r} = 2.424 {\rm Mg} {\rm m}^{-3}$	
D_m not measured	
Data collection	

Nicolet P3 diffractometer $\theta/2\theta$ scans Absorption correction: ψ scans (North, Phillips & Mathews, 1968) $T_{\min} = 0.049, T_{\max} =$ 0.112 4665 measured reflections 3758 independent reflections 2779 observed reflections $[F > 4\sigma(F)]$

Refinement

Refinement on FR = 0.048wR = 0.066

4

 $R_{\rm int} = 0.025$ $\theta_{\rm max} = 30^{\circ}$ $h = -13 \rightarrow 13$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 17$ 2 standard reflections monitored every 50 reflections intensity variation: 2%

 $\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.41 \text{ e } \text{\AA}^{-3}$ (0.20 Å from I1)

S = 0.75	Extinction correction: none
2779 reflections	Atomic scattering factors
137 parameters	from International Tables
$w = 1/[\sigma^2(F) + 0.012134F^2]$	for X-ray Crystallography
$(\Delta/\sigma)_{\rm max} = 0.050$	(1974, Vol. IV)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
Sn	0.21397 (7)	0.05703 (5)	0.21018 (5)	0.0452 (2)
11	0.15287 (10)	0.25475 (6)	0.11184 (7)	0.0689 (3)
12	0.39800 (9)	0.10823 (7)	0.37307 (6)	0.0652 (3)
C1	0.3067 (10)	-0.0480 (8)	0.0984 (8)	0.048 (2)
C2	0.4418 (11)	-0.0857 (9)	0.1186 (8)	0.052 (2)
C3	0.4997 (11)	-0.1533 (10)	0.0453 (9)	0.057 (3)
C4	0.4238 (14)	-0.1785 (10)	-0.0473 (9)	0.065 (3)
C5	0.2888 (15)	-0.1368 (12)	0.0700 (10)	0.071 (4)
C6	0.2286 (13)	-0.0709 (11)	0.0033 (9)	0.066 (3)
C7	0.0211 (10)	0.0007 (8)	0.2654 (8)	0.048 (2)
C8	-0.0365 (17)	0.0561 (14)	0.3463 (14)	0.095 (6)
C9	-0.1633 (18)	0.0181 (17)	0.3787 (14)	0.093 (6)
C10	-0.2352 (14)	-0.0676 (15)	0.3287 (14)	0.086 (5)
C11	-0.1762 (13)	-0.1205 (12)	0.2485 (12)	0.074 (4)
C12	-0.0478 (12)	-0.0887(9)	0.2163 (9)	0.055 (3)

Table 2. Selected geometric parameters (Å, °)

11—Sn	2.7097 (10)	I2—Sn	2.6749 (10)
C1—Sn	2.140 (10)	C7—Sn	2.133 (9)
I2—Sn—I1	105.17 (3)	C1—Sn—11	106.7 (3)
C1—Sn—I2	111.5 (3)	C7—Sn—11	105.5 (3)
C7—Sn—I2	110.3 (3)	C7—Sn—C1	116.7 (4)
C2—C1—Sn	120.1 (7)	C6—C1—Sn	118.0 (8)
C8—C7—Sn	120.3 (9)	C12—C7—Sn	119.2 (8)
$\begin{array}{l} 11 \cdots 5n^{i} \\ 11 \cdots 12^{ii} \\ 11 \cdots 12^{i} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$4.3885 (10) 4.0745 (12) 4.2490 (11) - x, \frac{1}{2} + y, \frac{1}{2}$	$ \frac{12\cdots 11^{\text{iii}}}{12\cdots 11^{\text{iv}}} \\ \frac{12\cdots 12^{\text{v}}}{12\cdots 12^{\text{v}}} \\ -z; (\text{ii}) x - \frac{1}{2}, \frac{1}{2} $	$4.0745 (12) 4.2490 (11) 4.4550 (11) - y, z - \frac{1}{2}; (iii)$

 $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z; \text{ (iv) } \frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z; \text{ (v) } 1 - x, -y, 1 - z.$

The structure was solved by heavy-atom methods and refinement was by full-matrix least-squares methods. All non-H atoms were refined anisotropically. H atoms were placed in calculated positions (C—H = 0.95 Å) and refined riding upon the C atom to which they are attached with a common group U_{iso} . All computations were performed on the SUN SPARCserver (UNIX operating system) of the University of Aberdeen.

Data collection: *Nicolet P3 Software* (Nicolet XRD Corporation, 1980). Cell refinement: *Nicolet P3 Software*. Data reduction: *RDNIC* (Howie, 1980). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELX76* (Sheldrick, 1976). Molecular graphics: *PLOTAID* (Cradwick, 1970) and *ORTEX* (McArdle, 1994). Software used to prepare material for publication: *XPUB* (Low, 1980).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1048). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Alcock, N. W. & Sawyer, J. E. (1977). J. Chem. Soc. Dalton Trans. pp. 1090-1095.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Bokii, N. G., Struchkov, Yu. T. & Prokofiev, A. K. (1972). J. Struct. Chem. 13, 619-623.
- Cradwick, P. D. G. (1970). PLOTAID. A Fortran Program for the Preparation of Molecular Drawings. Macaulay Land Use Research Institute, Aberdeen, Scotland.
- Greene, P. T. & Bryan, R. F. (1971). J. Chem. Soc. A, pp. 2549-2554.
- Howie, R. A. (1980). RDNIC. Data Reduction Program for the Nicolet P3 Diffractometer. University of Aberdeen, Scotland.
- Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., p. 292. New York: Harper Collins.
- Ingham, R. K., Rosenberg, S. D. & Gilman, H. (1960). Chem. Rev. 60, 459-539.
- Low, J. N. (1980). XPUB. Program for the Preparation of Tabular Crystallographic Data. University of Dundee, Scotland.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Nicolet XRD Corporation (1980). *Nicolet P3 Software*. Nicolet XRD Corporation, Cupertino, California, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1996). C52, 1426-1428

catena-Poly[silver-µ-(di-2-pyridyl ketone)-N,O:N',O] Tetrafluoroborate

Shaun O. Sommerer,^a Barry L. Westcott,^b Alan J. Jircitano^b and Khalil A. Abboud^c

^aDepartment of Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, Florida 33161-6695, USA, ^bDivision of Science, The Pennsylvania State University at Erie, The Behrend College, Station Road, Erie, Pennsylvania 16563-1200, USA, and ^cDepartment of Chemistry, The University of Florida, Gainesville, Florida 32611-2046, USA. E-mail: sommerer@buaxp1.barry.edu

(Received 2 December 1995; accepted 1 February 1996)

Abstract

The title complex, $[Ag(C_{11}H_8N_2O)]_n^*.n(BF_4)^-$, contains polymeric [silver(di-2-pyridyl ketone)]_n^* zigzag chains, counterbalanced by BF_4^- anions. The Ag atoms reside on inversion centers, the di-2-pyridyl ketone ligands lie with their carbonyl groups along crystallographic twofold axes, and the BF_4^- ions also reside on inversion centers (and are disordered). The AgN_2O_2 moiety is precisely planar, with Ag-N 2.180(3) and Ag-O 2.552(1) Å, and N-Ag-O 69.35(9)°.

Comment

We have described previously *catena*-poly[(nitrato-O,O')silver(I)- μ -(di-2-pyridyl ketone-N:N')] (Sommerer, Westcott & Abboud, 1994), a metal-containing ex-